Applied Physics

Course Code	19BS1204	Year	I	Semester	II
Course Category	Basic Sciences	Branch	CE	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	Nil
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

Course Outcomes							
Upon s	Upon successful completion of the course, the student will be able to						
CO1	Estimate forces and moments in mechanical systems using scalar and vector						
	techniques.						
CO2	Apply the concepts of strain, internal force, stress and equilibrium to deformation of						
	solids.						
CO3	Explain the fundamental theory for the analysis of heat transfer processes in solids						
	and liquids and to apply basic principles of heat transfer in design of refrigerators						
	and heaters.						
CO4	Describe the fundamental principles of acoustics with emphasis on physical						
	mechanisms, law and relationships.						
CO5	Outline the basic principle and operation of different types of <i>sensors</i> .						

	Contribution of Course Outcomes towards achievement of Program Outcomes &													
	Strength of correlations (H:High, M: Medium, L:Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	Н	Н											Н	
CO2	Н	Н											Н	
CO3	Н	Н											Н	
CO4	Н	Н											Н	
CO5	Н	Н											Н	

Syllabus					
Unit	Unit Contents				
No.		CO			
I	Mechanics Basic laws of vectors and scalars; Rotational frames; Conservative and non-conservative forces; F = - grad V; Central forces; Elliptical, parabolic and hyperbolic orbits; Noninertial frames of reference; Centripetal acceleration; Harmonic oscillator; Damped harmonic motion; Forced oscillations and resonance. Degrees of freedom.	CO1			
II	Elasticity Concepts of elasticity and plasticity, stress and strain, Hooke's law, different moduli of elasticity, Poisson's ratio, strain energy, stress-strain diagram, elastic behavior of a material, factors affecting elasticity, relation between different moduli of elasticity, determination of elastic moduli	CO2			
III	Thermal Properties	CO3			

	Transfer of heat energy; Thermal expansion of solids and liquids; Expansion joints - bimetallic strips; Thermal conduction, convection and radiation and their fundamental laws; Heat conductions in solids; Thermal conductivity - Forbe's and Lee's disc method: theory and experiment; Applications (qualitative only): heat exchangers, refrigerators, ovens and solar water heaters.	
IV	Acoustics Characteristics of sound waves; Weber-Fechner Law; Absorption coefficient, determination of absorption coefficient; Reverberation time; Sabine's formula, derivation of Sabine's formula using growth and decay method; Intensity of sound; Acoustics of Buildings, Acoustic requirements of a good auditorium.	CO4
V	Sensors Sensors (qualitative description only); Different types of sensors and applications; Strain and pressure sensors - Piezoelectric, magneto strictive sensors; Fibre optic methods of pressure sensing; Temperature sensor - bimetallic strip, pyroelectric detectors; Hall-effect sensor; Smoke and fire detectors.	CO5

Learning Resources

Text Books

- 1. D. Kleppner and Robert Kolenkow "An Introduction to Mechanics—II" Cambridge University Press, 2015.
- 2. A Textbook of Engineering Physics, Volume-I By M.N. Avadhanulu& T.V.S. Arun Murthy S Chand.
- 3. Ian R Sinclair, Sensor and Transducers 3/e, 2001, Elsevier (Newnes)

Reference Books

- 1. M K Varma "Introduction to Mechanics"-Universities Press, 2015.
- 2.PrithwirajPurkait, BudhadityaBiswas and ChiranjibKoley, Chapter 11 Sensors and Transducers, Electrical and Electronics Measurements and Instrumentation, 1/e., 2013 McGraw Hill Education (India) Private Limited, 2013.

e- Resources & other digital material

http://nptel.ac.in/courses.phphttp://jntuk-coeer

http://freevideolectures.com/Course/3048/Physics-of-Materials/36